
D
R

A
F

T
Enfinity Suite 6

Advanced Search Module
Implementation and

Customization

D
R

A
F

T

This document covers the feature set delivered with Enfinity Suite 6.4 and above. The
information contained in this document is subject to change without notice at any time.

These materials are subject to change without notice. These materials are provided by
Intershop Communications AG and its affiliated companies ("Intershop Group") for
informational purposes only, without representation or warranty of any kind, and Intershop
Group shall not be liable for errors or omissions with respect to the materials. The only
warranties for Intershop Group products and services are those that are set forth in the express
warranty statements accompanying such products and services, if any. Nothing herein should
be construed as constituting an additional warranty.

This document and all of its parts are protected by copyright. All rights, including those
of duplication, reproduction, translation, microfilming, storage on electronic media and
processing in electronic form are expressly reserved.

Intershop® and Enfinity� are trademarks or registered trademarks of
Intershop Communications.

All other company, product and brand names are trademarks or registered trademarks of
their respective owners.

Copyright ©2005-2010 Intershop Communications. All Rights Reserved.

2010-05-10 Document ID: EMS-LIB-64-21-01

D
R

A
F

T

Table of Contents
Chapter 1 � Overview. 3

About this Guide. 4

Knowledge Assumed . 4

Typographical Conventions . 4

Chapter Overview . 4

Advanced Search Module Overview . 5

Chapter 2 � Common ASM Features . 7

Enabling the ASM. 8

Using Multiple Indexes . 9

Common ASM Concepts . 11

Index Attributes . 11

Filter Attributes . 12

Synonyms. 13

Stop Words . 15

Chapter 3 � Implementation and Customization. 16

Advanced Search Module Architecture . 17

Cartridge Structure . 17

Index Directory and Server Structure . 18

Configuration Files. 19

Search Pipelines . 19

Search Pipelets . 21

Template Integration . 22

Data Replication . 24

ASM-Related Jobs . 24

ASM Implementation and Customization . 26

Search Index Types . 26

searchindexfeatures.properties. 26

<FeatureID>[.<EngineID>].xml . 27

<FeatureID>[.<EngineID>]_<locale>.properties 29

Indexing Process . 29

Configuring the Index . 29

Building the Index. 30

Updating the Index . 30

Data Providers . 30

Example Cartridge ac_search_mysearch . 32

Implementing a Search Index . 32

D
R

A
F

T

Search Index Type . 32

Search Index Type Definition . 33

Search Index. 33

Search Index Configuration . 33

Search Index Import Handler . 33

Search Result . 34

Data Retrieval Queries . 34

Data Provider Classes . 34

Content Extractors . 35

Back-Office Templates. 36

Storefront Templates. 37

Search Suggestions . 38

Search Engine Preferences . 39

D
R

A
F

T

CHAPTER 1

Overview

D
R

A
F

T

About this Guide Knowledge Assumed

Chapter 1: Overview Page 4

About this Guide

By default, Enfinity Suite 6 uses the Oracle ConText search to query
database data. In order to provide a more powerful full-text search, guided
search and other advanced search features, Enfinity Suite 6 also integrates
an advanced search module (ASM) for product and content searches in
consumer and business channel storefronts. This interface enables the
integration of external search engines, which then build and query search
indexes and add search features such as full-text search, guided search, stop
word and synonym configuration to Enfinity Suite 6-based e-commerce
applications.
This document describes the main features of the advanced search module
(ASM) and discusses important administration and development issues.

Knowledge Assumed
This paper is addressed to both Enfinity Suite 6 developers and
Enfinity Suite 6 administrators. The paper assumes familiarity with the
technical architecture of Enfinity Suite 6, as well as the overall cartridge
development process.

Typographical Conventions
The following typographical conventions are used throughout the guide:

■ Cross-references
References to other parts of this guide and to other documentation
appear in italics.

■ Commands
All commands to be typed at command prompts appear in Courier font.

■ Reserved or Special Words
Names of files, directories, or cartridges appear in italics.

Example code, attribute names, methods and database table names appear
in Courier; for example, init(). In addition, the # sign refers to the number
of an Enfinity Suite 6 instance. If # precedes a shell prompt, it indicates that
the current user is root.

Chapter Overview
The remainder of this chapter introduces the advanced search module,
outlining general search options.
Chapter 2 outlines the general ASM functionalty, including its activation,
administration and general back-office usage.
Chapter 3 covers the ASM implementation and customization.

D
R

A
F

T

Advanced Search Module Overview Chapter Overview

Chapter 1: Overview Page 5

Advanced Search Module Overview

Through integrating an external search engine, the advanced search module
provides powerful search options to Enfinity Suite 6. Depending on the
actual search engine, these options may include:

■ Simple Search Index Interface
The advanced search module interface supports the creation and
configuration of search indexes to include specified standard and custom
product attributes for product searches and content parameters for
content searches.

■ Synonyms and Antonyms
The advanced search module interface provides the ability to configure
and store synonym and antonym configurations.

■ Guided Search (�After Search Navigation�)
The advanced search module interface provides a standard pipeline and
template set to add a guided search function to an Enfinity Suite 6
storefront. When a user submits a query to the simple search, a set of
filter attributes is presented along with the results. The filter attribute
values can be used to refine the search, hence narrow down the result
set. Behind each filter attribute value, a number indicates how many hits
the respective filter attribute value has produced.

Figure 1: Guided search in the consumer storefront

D
R

A
F

T

Advanced Search Module Overview Chapter Overview

Chapter 1: Overview Page 6

■ Dynamic Navigation
The advanced search module interface can be used to implement a
dynamic navigation. Dynamic navigation facilitates catalog browsing by
indicating for each category how many products the individual
categories and sub-categories contain.

NOTE: Dynamic navigation can be enabled via the search index preferences.

■ Suggest Function
The advanced search module interface can also provide a dynamic
recommendation function that offers possible completions for search
term fragments while typing the search term. Along with each
recommended completion, the number of possible hits, an optional image
and a suggestion type may be indicated.

Figure 2: Example for a suggest function based on Omikron FACT-Finder

D
R

A
F

T

CHAPTER 2

Common ASM Features

D
R

A
F

T

Enabling the ASM

Chapter 2: Common ASM Features Page 8

Enabling the ASM

Setting up an advanced search module implementation comprises, basically,
� installing a corresponding adapter cartridge, and
� setting up the external search engine as required.
This adds new search index types to your Enfinity Suite 6 installation. After
deploying the intended search engine and the corresponding adapter
cartridge, the new search index types must be enabled within the intended
channel(s). Consequently, the new search indexes must be created,
configured and built to become operative.

NOTE: The Search Index Preferences page is only available if there is an advanced
search module implementation installed.

To enable the advanced search module, proceed as follows:

1. In the Enfinity Suite 6 back office, select the intended channel
from the channel bar.
This opens the navigation bar of the channel.

2. In the navigation bar, select Preferences.
The overview page is displayed.

3. Select Search Indexes.
The Search Index detail page is displayed.
Figure 3: Defining search index preferences

NOTE: The available options depend on the given search module. Figure 3 shows
the options for the Apache Solr-based ASM as an example.

By default, the advanced search options are not selected. That is, the
standard Oracle ConText search is enabled.

D
R

A
F

T

Enabling the ASM Using Multiple Indexes

Chapter 2: Common ASM Features Page 9

4. Select the intended options.
The available options depend on the given search module. Generally, the
following index types are used within the standard storefront
implementation:
� SFProductSearch

This type indexes product data to support features like product
search, after search navigation, etc.

� SFContentSearch
This type indexes page and component data to support content search
within the storefront editing content.

5. Optionally, select a category level.
This enables the guided navigation at the selected category level.

6. Optionally, specify preferences for the given search engine.
The available options depend on the given search engine and its actual
implementation. For details, refer to the corresponding search module
documentation.

7. Click Apply.
This enables the settings immediately, i.e., without restarting the
Enfinity Suite 6 server.

Using Multiple Indexes
You can define multiple index configurations, hence work with multiple
indexes in parallel. For example, when supporting two different locales with
your storefront (e.g., en_US and de_DE), you obviously need one index for
en_US and another index for de_DE data.
Moreover, you can define separate index files for different index types. For
example, assume you have implemented a new index type SFStores for
a store finder (see Figure 4). The index to be used by the SFStores store
finder index requires a configuration that differs from the one used for the
standard storefront search.
Figure 4: Selecting a search index type

D
R

A
F

T

Enabling the ASM Using Multiple Indexes

Chapter 2: Common ASM Features Page 10

Index types are defined using a dedicated configuration file
(searchindexfeatures.properties) included with the adapter cartridge
ac_search_*. Note that you can add new search index types upon
customizing the search module (see ASM Implementation and Customization,
on p. 26).

NOTE: You can only use one online index per type (feature) and locale. You can,
however, create and build additional offline indexes.

D
R

A
F

T

Common ASM Concepts Index Attributes

Chapter 2: Common ASM Features Page 11

Common ASM Concepts

This section introduces general search index management concepts, which
are common for all advanced search module implementations.

NOTE: Managing indexes in the Enfinity Suite 6 back office requires the permission
SLD_MANAGE_SEARCH_INDEXES. By default, this permission is assigned to the access
privilege �Catalog Manager�.

The index creation (and search, consequently) is based on configurable
attributes. Hence, indexing is generally based on defining index attributes
and filter attributes, as well as on defining synonyms and stop words.

NOTE: Any additional search functionality (tuning, campaigns, etc.) depends on the
actual search engine implemented as advanced search module in Enfinity Suite 6.

Index Attributes
When creating an index in the Enfinity Suite 6 back office, the responsible
user has to select the product attributes to be included in the index.
Figure 5: Defining indexed attributes

� Certain standard product attributes are automatically included with the
index, most of them for technical purposes, such as �productuuid�. These
attributes cannot be managed on the Indexed Attributes tab. In addition,
the index automatically includes information regarding catalog and
category structure, starting with the top level category 0, down to
category level 5. This information is used to enable the filter mechanism
using catalog categories in the storefront.
If the multiple category assignment attribute is added to the index, it is
possible to include the category assignments for products that are
assigned to more than one category. The category levels 1 through 5 are
then replaced by the special CategoryUUIDLevelMulti field. The category
display names for the product are still indexed and are taken from the
default category.

D
R

A
F

T

Common ASM Concepts Filter Attributes

Chapter 2: Common ASM Features Page 12

� Business attributes defined on products are offered on the Indexed
Attributes tab, where they can be selected for inclusion in the index (see
Figure 5).

� Custom attributes defined on a product can be included in the index
using the input fields on the Indexed Attributes tab. To include all
custom attributes, select the option �AllCustomAttributes�.

NOTE: Although you can select all custom attributes to be indexed, Intershop
recommends to select only those attributes that contain useful, searchable
information.

The standard product attributes to be indexed automatically as well as
additional business attributes to be offered on the Indexed Attributes tab of
the Enfinity Suite 6 back office are defined in the search index type
definition file for the corresponding search index.

NOTE: The sections above describe the standard implementation of managing
indexed attributes provided by Enfinity Suite 6. It can be overridden for specific index
types (see Search Index Types, on p. 26).

Filter Attributes
Enfinity Suite 6 provides a convenient way to easily configure filter
attributes for guided search in the consumer storefront (see Advanced Search
Module Overview, on p. 5).
Two types of filter attributes are available:

■ Index Filter Attributes
Index filter attributes are defined in the Search Index area of the back
office. In Figure 6, two index filter attributes are defined, �Brand� and
�Price�. See Figure 1, on p. 5 on how these filter attributes are displayed
in the storefront.

Figure 6: Defining index filter attributes

Index filter attributes are defined specifically for each index, with the
according definitions stored in the corresponding configuration file (see
Configuration Files, on p. 19). They are applied to all objects of the index.

D
R

A
F

T

Common ASM Concepts Synonyms

Chapter 2: Common ASM Features Page 13

■ Category Filter Attributes
Category filter attributes are defined in the Channel Catalog area of the
back office. This mechanism is used for filter attributes that are relevant
for specific categories only. For example, in Figure 7, a filter attribute
�Display Size� has been defined for the catalog category �TFT Monitors�.
In the PrimeTech demo storefront, this filter attribute will only be
displayed if users submit a simple search and then drill down to the
category �TFT Monitors�.

Figure 7: Defining category filter attributes

Category filter attributes are only applied to products that are assigned to
the category on which the filter attribute has been defined. Note that
category filter attributes are defined globally for all indexes of a site.

The category specific filter attributes are stored in a dedicated
configuration file, categoryFilterAttributes.xml, in the indexes directory
(see Configuration Files, on p. 19).

NOTE: Make sure one and the same attribute is not defined both as index filter
attribute and category filter attribute.

When defining an attribute, you set the �unit� (e.g., inch) to display with the
filter attribute values. You also determine the data type (e.g., string or
integer). The data type set for an attribute in turn determines how the
attribute values are displayed.

NOTE: These are standard configuration views to manage filter attributes as
deployed by default. The actual view depends on the implementation of the used
search engine.

Synonyms
Synonyms are important to inform a search engine which words have
similar meanings, without any similarity in form (for example: �Jeans� �>
�Pants�).
Antonyms are used to tell a search engine that two words have nothing to do
with one another, despite the fact that a search engine would report a
similarity because the forms are similar (for example: �TFT� �> �DVD�).

D
R

A
F

T

Common ASM Concepts Synonyms

Chapter 2: Common ASM Features Page 14

The advanced search module provides a configuration view to define both
synonyms and antonyms in the back office on the Synonym tab of the
respective index. The difference is in the reduction used for the word
relationship. Synonyms have a word relationship reduction of 0%. Antonyms
have a reduction of 100%. Intermediate values may be used to define word
relationships that are not exactly synonyms, but also not antonyms. For
example, Jeans �> Pants. This word relationship could be given a slight
reduction (such as 5%), so that a search for �Pants� would also find �Blue
Jeans�, but still give �corduroy pants� earlier in the list.
Synonym and antonym relations defined in the back office are mapped to
entries within the dedicated synonyms section in the general configuration
file (see Configuration Files, on p. 19). A search engine specific
implementation may map these synonym configurations to the search
engine-specific configurations or may replace the synonym configuration tab
completely if the search engine provides its own configuration pages.
For each synonym and antonym relation, you can define the reduction
separately depending on the direction in which the relation is traversed. For
example, in Figure 8, when a search engine searches semantic relations for
�TFT�, it may identify �Monitor� as synonym item, but apply a 5% reduction.
On the other hand, when looking for items semantically related to �Monitor�,
a search engine may identify �TFT� as a synonym, without applying
a reduction. Also in Figure 8, an antonym relation is defined connecting
�TFT� and �DVD�, indicating that these words are not related semantically.
Figure 8: Synonym and antonym relations

NOTE: Depending on the actually integrated search engine, the synonym evaluation
may differ. Possible differences in the search approach may include, among others,
recursive evaluation, synonym look up (exact or fuzzy search) or search for single
words only or phrases.

D
R

A
F

T

Common ASM Concepts Stop Words

Chapter 2: Common ASM Features Page 15

Stop Words
Stop words can be defined in the back office to exclude words from the index
that have no relevance. A typical example are function words such as �the�,
�a�, etc., which have little meaning and can usually be ignored when
searching.
Stop word definitions defined in the back office are mapped to a dedicated
stopword section in the general configuration file (see Configuration Files,
on p. 19).

D
R

A
F

T

CHAPTER 3

Implementation and
Customization

D
R

A
F

T

Advanced Search Module Architecture Cartridge Structure

Chapter 3: Implementation and Customization Page 17

Advanced Search Module Architecture

This section gives an overview of the standard ASM components as included
with Enfinity Suite 6. This covers the involved cartridges, the configuration
files, the involved pipelines and the standard template integration.

Cartridge Structure
The functionality provided by advanced search module is distributed across
cartridges as follows:
� The cartridge bc_foundation defines the main CAPI interfaces that

expose the functionality of the advanced search module. In addition,
bc_foundation and bc_mvc provide a number of basic pipelets that access
these interfaces and that are used by the search pipelines in the
storefront. For more details, refer to the searchindex packages in the
JavaDocs generated for these cartridges.

� The interfaces and base implementation classes exposed by
bc_foundation, bc_mvc and bc_pmc are implemented or extended by
resources contained in the search engine-specific ac_search_* cartridge.

� In addition, pipelines and templates provide a common user interface to
create, configure, build and update search indexes in the backoffice
(sld_ch_base) and to facilitate search and navigation with search indexes
in the storefront (sld_ch_consumer_app, sld_ch_adv_corporate_app).

Figure 9 gives a graphical overview of the involved cartridges, and Table 1
lists the ASM specific contents of each involved cartridge.
Figure 9: Cartridges including ASM functionality

D
R

A
F

T

Advanced Search Module Architecture Index Directory and Server Structure

Chapter 3: Implementation and Customization Page 18

Table 1: ASM-specific cartridge contents

Index Directory and Server Structure
Since several search engines operate with file based indexes, the advanced
search module provides means to store these indexes into the Shared File
System of Enfinity Suite 6. Depending on the given search engine, an index
file may be created when building the index. When rebuilding the index
(e.g., when structural changes have been applied to the index configuration),
the index file is updated or created anew, and a backup of the old index file
is saved.
Each index defined in the back office has its own index directory. The index
directory is located in the unit directories of the site for which the indexes
have been defined. For example, the index files for the PrimeTechSpecials
consumer storefront are located in <IS.INSTANCE.SHARE>/sites/PrimeTech-
PrimeTechSpecials-Site/1/units/PrimeTech-PrimeTechSpecials/indexes/
<index_name>.
Figure 10 illustrates � based on FACT-Finder as an example � the general
deployment and the information flow between the Enfinity Suite 6
application servers and one or more search servers. As you see, the search
index files are located in the Shared File System of Enfinity Suite 6, and the
search requests are sent to the search server(s) using a search engine-
specific client library.

Cartridge ASM Contents

bc_foundation Interface and base implementations, pipelets,
pipelines.

bc_mvc Data providers for catalog and product data.

bc_pmc Data providers for storefront editing (pagelet)
content.

sld_ch_consumer_app Pipelines and templates for the B2C channel
storefront.

sld_ch_adv_corporate_app Pipelines and templates for the B2B channel
storefront.

sld_ch_base Pipelines and templates for the search index-
specific back office modules.

sld_system_app Job pipeline for the index creation.

ac_search_* Search engine-specific adapter cartridge(s) that
implement the ASM interfaces provided by the
above cartridges.

D
R

A
F

T

Advanced Search Module Architecture Configuration Files

Chapter 3: Implementation and Customization Page 19

Figure 10: Data flow between Enfinity Suite 6 and the search server(s)

Configuration Files
An ASM implementation is configured using a general configuration file,
ISH-config.xml, and search engine-specific configuration files, which are
created automatically when configuring an index in the back office. The
configuration files are index-specific, hence contained in
<IS.INSTANCE.SHARE>/sites/<site>/<active_directory>/units/<unit>/indexes/
<indexID>.
The general ISH-config.xml file defines the Enfinity Suite 6-specific search
index configuration. It is written by the search index configuration class of
the foundation cartridge. The file stores the attributes currently selected to
be indexed, as well as additional, basic information about the index. This
general data is displayed in the General tab of the back office Search Index
dialog.

CAUTION: ASM implementations may use ISH-config.xml and its engine specific
configuration files to automatically synchronize each others configuration. Hence,
Intershop recommends not to modify the configuration manually but use the
configuration back office (unless stated otherwise). When modifying the
configuration settings manually, make sure to restart the application server since
your changes may be overwritten from an in-menory representation of the index
configuration.

Search Pipelines
Generally, the advanced search module is intended to replace the so-called
�Simple Search�. In the demo application, the �Advanced Search� option,
which continues to be based on the Oracle ConText search, is hidden.
The pipeline that is executed when submitting a simple product search is
ViewParametricSearch-SimpleOfferSearch. This pipeline first checks whether
there is a search index type enabled (see Enabling the ASM, on p. 8). If so,

D
R

A
F

T

Advanced Search Module Architecture Search Pipelines

Chapter 3: Implementation and Customization Page 20

the pipeline jumps to the target pipeline
ViewParametricSearchBySearchIndex. If not, the standard search pipeline
ViewParametricSearchByOracle is used as fallback.
Figure 11: Search pipeline gateway

NOTE: Requests to all other sub-pipelines of ViewParametricSearch are automatically
routed the corresponding sub-pipeline of ViewParametricSearchByOracle.

Table 2 lists the standard pipelines that provide ASM functionality.
Table 2: ASM pipelines

Pipeline Cartridge Description

ViewParametric
SearchBySearchIndex

sld_ch_consumer_app
sld_ch_corporate_adv_app

Storefront viewing pipeline that
handles the standard search for
the SFProductSearch and
SFContentSearch index types.

ProcessParametric
SearchBySearchIndex

sld_ch_consumer_app
sld_ch_corporate_adv_app

Processing pipeline providing
standard processing of ASM
search, to the
ViewParametricSearchBySearch
Index pipeline.

ViewSearchIndex
Preferences

sld_ch_base Handles activation/deactivation
of search index types and
additional preferences for
search indexes.

ViewSearchIndex sld_ch_base The main back-office pipeline
that handles the creation,
update and deletion of search
indexes.

D
R

A
F

T

Advanced Search Module Architecture Search Pipelets

Chapter 3: Implementation and Customization Page 21

Search Pipelets
The standard pipelines as mentioned above use the provided standard
pipelets related to the advanced search module. The search-related pipelets
as shipped with Enfinity Suite 6 are organized in the pipelet group
SearchIndex (see Figure 12).
Figure 12: Enfinity Studio listing the search-related pipelets

ViewCustom
Searchindex

sld_ch_base Contains additional back-office
functionality for index
configuration.

ProcessSearchIndex sld_ch_base Process pipeline for back-office
functionality, includes also the
batch process implementation
for building and updating
indexes.

ProcessSearchIndex
Feature

bc_foundation Processing pipeline to handle
available search index types and
search index features.

UpdateSearchIndexes
Job

sld_system_app Job pipeline that updates the
available online indexes of the
system.

Pipeline Cartridge Description

D
R

A
F

T

Advanced Search Module Architecture Template Integration

Chapter 3: Implementation and Customization Page 22

You can use the Enfinity Studio pipelet view to get detailed information
about these pipelets. Generally, Intershop recommends to use these pipelets
to build custom search pipelines with your customized or new search index.

Template Integration
The storefront integration of the ASM provides several standard templates
that use the provided standard interfaces to implement the storefront
functionality. These templates are located in the storefront cartridges
(sld_ch_consumer_app, sld_ch_adv_corporate_app) in the template
sub-directory default/searchindex/.

NOTE: You can override these templates by a definition inside the search module
using a search engine-specific template implementation.

Table 3 lists the standard storefront templates that provide ASM
functionality.
Table 3: Standard ASM storefront templates

Template Description

SearchResult.isml Used to process general information about the
search result such as index error status or a default
message if no result is found. The main part includes
several other templates that depend on the search
index feature definition.

ProductSearchResult
List.isml

Search result list related to storefront product search
indexes (SFProductSearch).

ContentSearchResult
List.isml

Search result list related to storefront content search
indexes (SFContentSearch).

SearchResultTabs.isml If both product and content search are used and the
two indexes show search results, this template
displays two links (tabs) to switch between the
product and content search results.

SearchBread
Crumbs.isml

Renders the breadcrumb on top of the result list.

D
R

A
F

T

Advanced Search Module Architecture Template Integration

Chapter 3: Implementation and Customization Page 23

For CategoryFilterAttributesIterator, the correspondiong ISML code may
look like this:

<isif condition="#isDefined(CategoryFilterAttributesIterator)#">

<isloop iterator="CategoryFilterAttributesIterator"

alias="catFilterAttribute">

For StandardFilterAttributesIterator, the correspondiong ISML code may
look like this:

<isif condition="#isDefined(StandardFilterAttributesIterator)#">

<isloop iterator="StandardFilterAttributesIterator"

alias=�stdFilterAttribute�>

Figure 13 illustrates the template usage in the example storefront.
Figure 13: ASM storefront templates

SearchIndex
Paging.isml

Displays the paging bar and a search sorting box.

FilterAttributes.isml Implements the guided search in the left navigation
using three iterators provided by the search pipeline:
� StandardCategoriesAsFilterAttribute, provides

the catalog categories of the search result as an
iterator of filter attribute entries

� CategoryFilterAttributesIterator, provides the
category-specific filter attributes defined for the
current category, along with the number of hits,
etc.

� StandardFilterAttributesIterator, provides the
global filter attributes defined for the index

Template Description

D
R

A
F

T

Advanced Search Module Architecture Data Replication

Chapter 3: Implementation and Customization Page 24

In addition, an ASM implementation may provide additional templates to be
included in order to support specific features provided by a given search
engine. This may include:
� SearchResultErrorTemplate (no default template provided), can be used

to display specific error information,
� SearchResultEmptyTemplate (no default template provided), to be

displayed if there is no search result,
� SearchCampaignsTemplate (no default template provided), intended to

be used for display of promotional content or additional information
above the actual search result,

� SuggestSearchResultTemplate (/SuggestResult.isml), renders a suggest
search result to display suggests in the storefront with the provided
suggest script.

Data Replication
The common search indexes management includes mechanisms to support
the replication of indexes. To this end, a staging group is defined in the
bc_foundation cartridge, FND_SearchIndexes, which is processed by
a dedicated SearchIndexesStagingProcessor. This processor uses a file system
staging processor that is defined in the staging.properties file. This is the
default configuration:

staging.processor.SearchIndexesStagingProcessor.className =

com.intershop.beehive.core.capi.staging.process.SimpleFileSystemStagingProcessor

staging.processor.SearchIndexesStagingProcessor.decorator.0 =

com.intershop.component.foundation.capi.replication.RefreshSearchIndexesDecorator

The file system staging processor for search indexes is configured to
replicate the default location of search indexes and its configurations,
units/${UNIT}/indexes.
The special decorator runs after a replication process to notify the
Enfinity Suite 6 application servers and, depending on the implementation,
the search engines about the search indexes to reload. The default
RefreshSearchIndexesDecorator sends an RefreshSearchIndexesEvent
processed by the event handler SearchIndexMgr. The default implementation
will call the unload and load methods of the indexes.
The staging group FND_SearchIndexes is added to the data replication groups
PRODUCTS, PRODUCTPRICES and CATALOGS in the
ProcessReplicationGroupAssignment_52 pipeline. When assigning these
replication groups to a data replication task, the search indexes will also be
replicated.

ASM-Related Jobs
In order to trigger an update of all search indexes in the system, there is the
dedicated schedule UpdateSearchIndexes defined in the SLDSystem site. This
schedule is disabled by default.

D
R

A
F

T

Advanced Search Module Architecture ASM-Related Jobs

Chapter 3: Implementation and Customization Page 25

The schedule UpdateSearchIndexes calls the ProcessSearchIndex pipeline of
the sld_ch_base cartridge to process all search indexes of a domain. This
pipeline can also be parametrized in custom schedules to rebuild or update
only a specified search index.
The sld_ch_base cartridge and its pipelines are available in the SLDSystem
site. The schedule UpdateSearchIndexes must therefore be defined in this
site or in a unit that belongs to this site, i.e., for the demo scenario, for
example, in PrimeTech-Site or in PrimeTech.
Table 4 lists the parameters that can be specified as schedule attributes.
Table 4: ProcessSearchIndex-CompleteBuildIndex Parameters

Parameter Name Description Notes

SearchIndexID The search index identifer as specified
in the search index back office.

required

UnitName The unit name, e.g., PrimeTech-
PrimeTechSpecials.

required

SearchIndex
ProcessAction

The action to be executed, either Update
to update only changed objects or
Rebuild to re-create the index.

required

D
R

A
F

T

ASM Implementation and Customization Search Index Types

Chapter 3: Implementation and Customization Page 26

ASM Implementation and Customization

This section describes advanced search module implementation with respect
to the indexing process and the index types. It outlines how to extend the
ASM in order to create a customized search engine integration that can be
plugged into Enfinity Suite 6. Doing so assumes a sound knowledge of the
Enfinity Suite 6 development processes.
The Enfinity Suite 6 ASM is able to manage search implementations for
different search index types and with different search engines. Typically, an
ASM implementation is deployed via an additional cartridge that
implements the ASM interfaces or extends the base classes of the advanced
search module and changes the standard back office at specific extension
points.
A central part of the ASM is included with the bc_foundation cartridge in the
package com.intershop.component.foundation.searchindex. The existing
search index manager implementation provides the basic methods to handle
the specific implementations of ASM.

Search Index Types
The available search index types supported by the advanced search module
and their properties are controlled by the following configuration files:
� searchindexfeatures.properties
� <indexTypeID>[.<engineID>].xml
� <indexTypeID>[.<engineID>]_<locale>.properties

searchindexfeatures.properties
These cartridge-specific files (individually located in <cartridge>/javasource/
resources/<cartridge>/searchindex) determine the available search index
types of the system. Each cartridge that is listed after the foundation
cartridge in the cartridgelist.properties may provide an additional
searchindexfeatures.properties file in order to extend or customize the
available search index types. Generally, these files determine the individual
search index type identifiers and the Java classes used to represent the
index. The search index manager of the foundation cartridge scans these
files to find the available search index types as well as the assigned index
classes to instantiate the index representations of the search indexes
available at the server.
The class name that is specified as the property value in the
searchindexfeatures.properties file must implement the
com.intershop.component.foundation.capi.searchindex.SearchIndex or can
extend the base implementation class
com.intershop.component.foundation.internal.searchindex.SearchIndexBaseImpl.

D
R

A
F

T

ASM Implementation and Customization Search Index Types

Chapter 3: Implementation and Customization Page 27

The example illustrates the searchindexfeatures.properties of the
ac_search_factfinder cartridge:

SFProductSearch =

com.intershop.adapter.search_factfinder.internal.FactfinderProductIndex

SFProductSearch.factfinder-ws =

com.intershop.adapter.search_factfinder.internal.webservice.FactfinderIndex

<FeatureID>[.<EngineID>].xml
The search index type definition file (individually located in <cartridge>/
javasource/resources/<cartridge>/searchindex) determines the properties of
a search index type and available static attributes that will always be added
or that can be added to the index via the back office.
Intershop recommends to qualify the search index type using an additional
search engine ID, e.g., SFProductSearch.factfinder-ws.xml. This is necessary if
the system includes different implementations for the same index type.
Using the search engine qualification provides the ability to have individual
index implementations for different channels.

NOTE: Only one implementation for a search index type can be active for an index
type at one channel.

In addition to some descriptive information and the available (static)
attributes that are defined for the index type, there are some additional
elements of the search index type definition that are used when the index is
built or updated.
Table 5: Search index type elements

Element Description

description Descriptive information specifying the index�
purpose, used in the back office preferences
page.

searchEngineName Search engine name, used as display name in
the back office.

importHandlerClass The class to be instantiated when the index is
built or updated, the import handler takes the
data of the objects that will be in the index
and writes this object data to the index.

objectsResultClass Provides a class to re-instantiate
Enfinity Suite 6 objects from the search
result, used in ResolveObjectsFromSearchResult.

objectsToIndexQueryName Name for a query that retrieves the objects
that should be part of the index; the query is
used for building and updating the index.

objectsToRemoveQueryName Name for a query that retrieves objects to be
removed from the index during an update.

D
R

A
F

T

ASM Implementation and Customization Search Index Types

Chapter 3: Implementation and Customization Page 28

The element type attribute specifies the initial properties of an index
attribute. The element basically maps directly to the class
com.intershop.component.foundation.capi.searchindex.Attribute (for more
details, see the JavaDoc).
The standard attributes and the selected business attributes are used to
create the index configuration file (ISH-config.xml) and the search engine-
specific index configuration file (with FACT-Finder, for example, config.xml).
The elements of the attribute can be mapped to the initial engine-specific
field configuration elements via the corresponding ASM implementations.
Table 6: Attribute elements

dataProviders List of data providers used to retrieve data
from Enfinity that is to be passed to the
search index import handler.

defaultAttribute Default attribute definition used when adding
an attribute in the back office that specifies
only a name and description. The default
attribute defines the additional values that are
used to add this attribute to the index.

templates Defines search index type-specific templates
that should be used for displaying results of
the search index type.

attributes The list of index attribute elements that will
be added automatically at index creation
(=standard attributes) and the business
attributes that are available for selection in
the back office.

Element Description

Element Type Description

cluster string Specifies a clustering of grouped
attributes.

dataProviderName string Maps to a data provider definition name,
which defines the data provider that is
responsible to get the index data for this
attribute.

dataType int Specifies the data type (0=string, 1=int,
2=double).

description string Specifies a description for the attribute
(used in the back office).

displayName string Specifies a displayname for the
attribute.

filterAttribute boolean Specifies whether this attribute is to be
used for filter group creation.

D
R

A
F

T

ASM Implementation and Customization Indexing Process

Chapter 3: Implementation and Customization Page 29

<FeatureID>[.<EngineID>]_<locale>.properties
The defined attribute display names and descriptions can optionally be
localized using these additional property files (located as well in <cartridge>/
javasource/resources/<cartridge>/searchindex). These localizations are used
within the back office to display the selectable attributes with respect to the
user�s locale.

NOTE: If there is a localization, the attributes are added to the ISH-config.xml with the
localized names and descriptions of the respective index locale, but shown in the
back office with the current backoffice user�s locale.

Indexing Process
This section outlines the indexing process as performed by the advanced
search module in Enfinity Suite 6.

Configuring the Index
Upon configuring the index in the back office, the search index and its
configuration is instantiated. If changes are applied to the configuration, the
save method of the configuration is called to persist the changes.

group string Specifies a group name.

groupSort int Specifies a possible sorting.

name string Specifies the unique name for this
attribute.

position int Specifies the position of a filter
(currently unused).

searchable boolean Specifies whether the attribute can be
searched.

sortable boolean Specifies whether the attribute is used
for sorting.

standard boolean Specifies whether the attribute is added
by default (true = attribute is added to
the index at index creation, false =
business attribute is available in the
back office for selection).

unit string Specifies an optional unit.

weight int Optionally, can specify a weighting of
the attribute (search engine specific).

Element Type Description

D
R

A
F

T

ASM Implementation and Customization Indexing Process

Chapter 3: Implementation and Customization Page 30

Building the Index
Triggering an index build process via the back office starts a batch process
(job). During the batch process initialization, the index import handler is
instantiated. If there are any data providers defined for the search index
type, they are instantiated as well and the respective attributes are
registered to its providers. The query for indexing objects
(objectsToIndexQueryName) is executed to retrieve the objects. These objects
are passed to the search index import handler, with the default base
implementation to each data provider. The data providers can now determine
the data to be indexed and return this data to the index handler. The index
handler is now responsible for writing this data to the index.
Figure 14 illustrates this process.
Figure 14: Building a search index

Updating the Index
Basically, the same process is executed upon updating the index. As
opposed to the index build, the objectsToIndex query gets an additional
parameter, LastIndexStartTime, which is used as a condition to determine
only the new or updated objects. An additional query is executed to
determine objects that need to be removed from the index. These objects are
then passed to the search index import handler, which then removes them
from the index.

Data Providers
Data providers are intended to retrieve the required data from
Enfinity Suite 6 (or other sources) and to pass the data to the index handler.
Thus, it separates the step of retrieving the data from the specific index
organization and the specifics of a certain search index implementation.

D
R

A
F

T

ASM Implementation and Customization Indexing Process

Chapter 3: Implementation and Customization Page 31

Additional data providers can also be used to extend and customize already
existing index types through providing additional or different data to these
index types.
Since most of the Enfinity Suite 6 data reside in the database, there are some
base implementations that utilize the query framework to retrieve the data
and to provide some basic mapping methods, which map the retrieved query
data to the search index attributes.

D
R

A
F

T

Example Cartridge ac_search_mysearch Implementing a Search Index

Chapter 3: Implementation and Customization Page 32

Example Cartridge ac_search_mysearch

Based on an example cartridge, the following sections describe how to create
a search implementation. For the purpose of the example, we assume to
implement the imaginary search engine �MySearch�.

NOTE: The example cartridge does not implement any search or filter functionality.
Its mere purpose is to illustrate the basic integration steps into the ASM.

Building and installing the example cartridge requires the usual Enfinity
Suite 6 development environment. Basically, this includes the following
steps:
� Building the cartridge using Ant,
� Adding the cartridge ac_search_mysearch to the cartridgelist.properties in

<IS.INSTANCE.SHARE>/system/cartridges,
� Restarting the Enfinity Suite 6 application server.

Implementing a Search Index
The ac_search_mysearch cartridge illustrates how to use the advanced
search module for defining a new search index. Doing so involves the
following steps:
� Defining a search index type implementing the SFProductSearch index

type,
� Writing the search index type definition,
� Reusing existing queries to retrieve the data to be indexed.
This section also outlines which base classes or abstract classes are to be
extended when implementing a new search index.

NOTE: You may use the bc_foundation base implementations to create a new search
index type that shows up in the back office and that is configurable using the
standard features such as selecting indexed attributes or adding stop words and
synonyms. However, the base implementations of bc_foundation do not implement
indexing, search and search result functionality. This must be done using search
index type-specific implementations.

Search Index Type
To add a new search index feature definition, add the configuration file
searchindexfeatures.properties to the example cartridge. In this file, define
the search index type as well as the class used to represent this index.
Content of the example searchindexfeatures.properties:

#Index-type.EngineID=IndexClassName

SFProductSearch.mysearch=com.intershop.adapter.search_mysearch.Index

D
R

A
F

T

Example Cartridge ac_search_mysearch Implementing a Search Index

Chapter 3: Implementation and Customization Page 33

Search Index Type Definition
In the next step, describe the search index type using the search index type
definition file. The following example illustrates some sections of the search
index type definition. Refer to the file SFProductSearch.mysearch.xml
provided with the example cartridge to see a complete definition with
additional comments.
Once completed the type definition and the index classes (mentioned below)
you can build the cartridge and restart the server. The new search index
type should appear in the Search Index Preferences page of the back office
available for activation. You should also be able to create a new search index
configuration applying the new type as well as to add index attributes.

Search Index
The search index object represents an index that usually resides as a file (or
files) on the disk. It implements methods to query the search index as well
as methods to support the index lifecycle in the server (e.g., load or unload).
Note that there is a single instance created for each search index defined in
the system. The search index object is held in memory by the search index
manager.
SearchIndexBaseImpl constitutes the base implementation of a search index
(in bc_foundation), which is to be extended or overridden upon
customization.

Search Index Configuration
The search index configuration is used to store information about, for
example, the selected indexed attributes for a search index. The search
index configuration is associated to a specific search index implementation
and to an implementing search index object. The configuration
implementation is responsible for creating and updating appropriate search
index configuration files with respect to the implemented index.

NOTE: The specific configurations may derive its specific configuration files from the
common configuration.

The class SearchIndexConfigurationImpl maintains the search index
configuration stored in the ISH-config.xml file.

Search Index Import Handler
The search index import handler is responsible for creating and updating an
index. The handler is instantiated upon starting the batch process for
building and updating indexes (once for each indexing process). This
handler is always search engine-specific.
AbstractSearchIndexImportHandler constitutes the abstract base class (in
bc_foundation) that instantiates and uses data providers given in a search
index type definition.

D
R

A
F

T

Example Cartridge ac_search_mysearch Implementing a Search Index

Chapter 3: Implementation and Customization Page 34

Search Result
This object is a common representation of the search result retrieved from
an index. Generally, it provides methods for retrieving the actual hits from
the query as well as helper methods for paging the search results. The
search result is also used to resolve the hits of the current page back to
objects that can be used to display the results.
In addition, the search result must provide implementations for the
FilterAttribute/FilterAttributeEntry interfaces to enable the guided
navigation as well as a list of SearchItem implementations to provide
a breadcrumb trail of the search result in the storefront.

Data Retrieval Queries
The Enfinity Suite 6 query framework is used to obtain the store data from
the database. This requires a query that delivers the objects to be indexed
and, additionally, a query that retrieves the custom attributes for these
objects.
In the example cartridge ac_search_mysearch, the already existing query
product/GeProductsToIndex is used to get the products to be indexed. The
used query is defined in the SFProducts.mysearch.xml as
objectsToIndexQueryName.
To remove deleted data from the index, there is a query
objectsToRemoveQueryName, which is executed when the index is updated. The
objects retrieved from the removal query are handed over to the method
removeObjectsfromSearchIndex of the index handler.

Data Provider Classes
Search index data providers are classes that can be plugged-in to the search
indexing process to retrieve data for the search index from the
Enfinity Suite 6 database or other data sources that are related to the
indexed objects. By default, there are data providers to retrieve catalog data
(category data and product data) and a data provider to retrieve pagelet
content. Data providers are specified in the search index type definition.

NOTE: The query framework lookup for queries relies on the assigned cartridges for
a site. The search cartridge is assigned automatically to the backoffice and storefront
site when activating the search index feature.

There are a number of basic abstract classes that help defining and
implementing additional data providers.

D
R

A
F

T

Example Cartridge ac_search_mysearch Implementing a Search Index

Chapter 3: Implementation and Customization Page 35

Table 7: Data provider classes in bc_foundation

NOTE: Some of the base classes are kept in the internal package. They are,
however, intended to be extended or overridden depending on the needs for new
search index implementations.

Content Extractors
A content extractor is intended to additionally process a specific index
attribute value. It is used, for example, to process HTML content in the
pagelet configuration parameters. The basic interface for content extractors
included with bc_foundation is ContentExtractor.

Class Description

capi.searchindex.dataprovider.
AbstractSearchIndexDataProvider

Handles the registration of
attributes only

internal.searchindex.dataprovider.
AbstractExtractorDataProvider

Handles, in addition, the
configuration and instantiation of
content extractors as defined by
the properties as well as methods
to get and call the content
extractors

internal.searchindex.dataprovider.
AbstractQueryDataProvider

Base class for loading,
parameterizing and executing
database queries based on the
query framework

mvc.internal.searchindex.dataprovider.
ProductPODataProvider

Retrieves data from the product
table

mvc.internal.searchindex.dataprovider.
ProductAVDataProvider

Retrieves additional product data
stored into custom attributes of
the product

mvc.internal.searchindex.dataprovider.
CatalogFilterDataProvider

Retrieves data about catalog
views. Returns the catalog filter
uuids for wich a product will be
visible

mvc.internal.searchindex.dataprovider.
CatalogCategoryPathDataProvider

Retrieves data of assigned
categories for a product

mvc.internal.searchindex.dataprovider.
ProductListPriceDataProvider

Retrieves product list price data

pmc.internal.searchindex.
PageletPODataProvider

Retrieves data from commerce
site editing pages and
components

D
R

A
F

T

Example Cartridge ac_search_mysearch Back-Office Templates

Chapter 3: Implementation and Customization Page 36

Content extractors can retrieve different types of content. If there are, for
example, product attchements defined that contain links to documents
located in the file system, a content extractor may take the file reference and
retrieve content out of the attached documents for indexing. The
AbstractExtractorDataprovider already provides an implementation to define
and instantiate content extractors. These content extractors are specified in
the properties of the data provider, like, for example

#example properties

#for a specific extractor for an attribute that contain html values

contentextractor.HTMLAttribute=html.xml

specify the type of extractor (regex|xml|full class name)

html.xml.type=xml

#ignore content inside of these tags

html.xml.ignore=script,style

#list of tags to index separately into title attribute

html.xml.tag.target.title=h1

#add content of specified attributes from the following tags

html.xml.attributes=img:alt,img:title,meta:content

There are two base implementations to extract text from HTML. They can be
configured by specifiying regex or html. To instantiate your own
implementations, specifiy a fully qualified class name. The parameters that
are defined with the given prefix html.xml are passed to the init method of
your content extractor.
To execute the content extracting, call the content extractor in your
implementation of the getData method. The following code snippet illustrates
the use of the methods provided with the AbstractExtractorDataProvider. It
assumes that there is an extractor definition for the attributeName and that
the value used for extracting is in the attributeValue object. If there is no
content extractor for the attribute, the value is directly passed to the index
data.

ContentExtractor ce = getContentExtractor(attributeName);

if(ce != null)

{

processContentExtractor(attributeValue, attributeName, ce, data);

}

else

{

data.put(attributeName, attributeValue);

}

For another example of the property definitions of the provided extractors,
refer to the SFContentSearch.factfinder-ws.xml located in resources/
ac_search_factfinder/searchindex.

Back-Office Templates
Different search index types may require different configuration pages in
the back office. To ease the integration of configuration pages without
changing the original back office, you can use a search index-specific
include to specify different tabs for the Search Index Detail view, like

D
R

A
F

T

Example Cartridge ac_search_mysearch Storefront Templates

Chapter 3: Implementation and Customization Page 37

/searchindex/inc/[<FeatureID>].[<EngineID>_]_Tabs.isml. The General tab is
always available since it is used to display the general information about the
search index, which is required for all search index types.
The tab include uses the following lookup:

1. a fully qualified tab include

2. a defined include for a specific engine

3. an include for the specific feature.
If there is no specific tab include available, the system displays the standard
tabs as defined in the template inc/SearchIndexTabs.isml of the sld_ch_base
cartridge.
For the ac_search_mysearch example cartridge, you can create a template
SFProductSearch.mysearch_Tabs.isml in searchindex/inc, as well as
a corresponding pipeline ViewMySearchConfig.

Storefront Templates
The ASM provides standard templates that use the ASM interface to render
a search result list, breadcrumbs, filter attribtues and the paging bar. The
results of a search index search may, however, deliver different result
objects for different index types. Therefore the ASM provides an include
mechanism for templates to enable ASM implementation cartridges to
replace or override the used standard templates. This mechanism can also
be used for the search engine-specific customization of storefront templates.
To specify a template for use with a specific search index type, there is
a section in the search index type definition file. The templates that are
defined in this section are dynamically included if a specified template
exists.
The currently used working template for displaying search results defines
a number of template names that can be used to map to physical templates.
The ASM and the default SearchResult.isml working template uses the
following name keys to include additional templates:
Table 8: ASM template name keys

Name Description Default Template

WorkingTemplate The working template used in
pipeline ViewParametricSearchBy
SearchIndex.

searchindex/
SearchResult.isml

LeftPanelWorking
Template

The template included to
render the left panel.

searchindex/
FilterAttributes.isml

SearchBreadCrumbs
Template

The breadcrumb section of the
search result display.

searchindex/Search
BreadCrumbs.isml

D
R

A
F

T

Example Cartridge ac_search_mysearch Search Suggestions

Chapter 3: Implementation and Customization Page 38

Search Suggestions
The ASM provides the opportunity to optionally implement suggestions for
product searches while typing a search term in the search input box.
To implement suggestions, the search index class needs to implement
a SearchResult getSuggestResult(String) method, which returns the suggest
items as simple Java bean classes. The default SuggestResult template will
render suggest result items implementing the following bean properties:
Table 9: Suggest result properties

SearchResultTabs
Template

An optional tab template to
display tabs for multiple
search result. The default
implementation can switch
between a SFProductSearch
and SFContentSearch search
result.

searchindex/
SearchResultTabs.isml

SearchIndexPaging
Template

The paging bar including the
drop-down box for sorting.

searchindex/
SearchIndexPaging.isml

SearchCampaigns
Template

Optional template included on
top of search result.

SearchResultList
Template

The result list. searchindex/Product
SearchResultList.isml

SearchResultError
Template

Optional error template
included if there was an error
during search.

SearchResultEmpty
Template

Optional template used if the
search result contains no
items to display in the search
result list.

SuggestSearchResult
Template

The template used to render a
suggest search result. Used
with the pipeline ViewParametric
SearchBySearchIndex-Suggest.

Name Description Default Template

Property Description

Query The suggestion string, to be displayed as suggestion
and used as search string when a user selects
a suggestions.

Type A type of suggestion, uses one of content, category,
brand, unspecified.

HitCount Specifies the number of possible hits.

D
R

A
F

T

Example Cartridge ac_search_mysearch Search Engine Preferences

Chapter 3: Implementation and Customization Page 39

The use of suggestions is configurable by the search index configuration.
Suggestions will be used if the isSuggestEnabled method of the search index
configuration class returns true.
The ac_search_mysearch example demonstrates the use of suggestions. It
will return a static suggest result if a user enters �su� as query string in the
search index box. A real implementation must implement suggest results for
real search terms.

Search Engine Preferences
The advanced search module is prepared to support additional configuration
settings that may be required for search engine integrations.
To define search index preferences for a specific search engine, you can add
preference definitions to the search index preference group
(SearchIndexPreferences). These search engine preferences are then
displayed on the search index preferences page in the back office. To
associate the preferences to a specific search engine, make sure that the
corresponding search engine ID precedes the actual preference identifier.
The following example illustrates the preference definition of the
ac_search_mysearch example cartridge.

■ PreferenceDefinitions.properties

mysearch example preference

mysearch.ExamplePreference = SearchIndexPreferences;3;;true;

■ PreferenceDefinitionInformation.properties

example preference description

mysearch.ExamplePreference = A sample preference showing the usage of

preferences to configure search engine specific configuration values.

SearchCount Specifies a number of searches (�How often was this
term used in search?�).

ImageURL An optional image URL that can be used to display an
image for a suggestion, SuggestResult.isml assumes
a Content URL format.

Property Description

	Overview
	About this Guide
	Knowledge Assumed
	Typographical Conventions
	Chapter Overview

	Advanced Search Module Overview

	Common ASM Features
	Enabling the ASM
	Using Multiple Indexes

	Common ASM Concepts
	Index Attributes
	Filter Attributes
	Synonyms
	Stop Words

	Implementation and Customization
	Advanced Search Module Architecture
	Cartridge Structure
	Index Directory and Server Structure
	Configuration Files
	Search Pipelines
	Search Pipelets
	Template Integration
	Data Replication
	ASM-Related Jobs

	ASM Implementation and Customization
	Search Index Types
	searchindexfeatures.properties
	<FeatureID>[.<EngineID>].xml
	<FeatureID>[.<EngineID>]_<locale>.properties

	Indexing Process
	Configuring the Index
	Building the Index
	Updating the Index
	Data Providers

	Example Cartridge ac_search_mysearch
	Implementing a Search Index
	Search Index Type
	Search Index Type Definition
	Search Index
	Search Index Configuration
	Search Index Import Handler
	Search Result
	Data Retrieval Queries
	Data Provider Classes
	Content Extractors

	Back-Office Templates
	Storefront Templates
	Search Suggestions
	Search Engine Preferences

